Math'φsics

Menu
  • Acceuil
  • Maths
  • Physique
    • Maths
    • Physique
  • Dérivées successives

    Formulaire de report

    dérivées successives :
    Soit \(f:I\to\Bbb R\) une fonction dérivable
    Soit \(f'\) sa dérivée
    Si \(f'\) est également dérivable, on note \(f''=(f')'\) la dérivée seconde de \(f\)
    Plus généralement, $${{f^{(0)} }}={{f}}\qquad {{f^{(1)} }}={{f'}}\qquad {{f^{(2)} }}={{f''}}$$$\({{f^{(n+1)} }}={{\left(f^{(n)}\right)'}}\)$ si \(f^{(n)}\) existe, on dit que \(f\) est \(n\) fois dérivable

    (Dérivée d’une fonction)

    Formule de Leibniz


  • Rétroliens :
    • Dérivation complexe
    • Dérivée - Dérivation
    • Dérivée partielle seconde
    • Développement en série entière
    • Espace de Schwartz - Fonction de Schwartz - Fonction déclinante
    • Formule de Leibniz
    • Formule de Taylor avec reste intégral
    • Formule de Taylor-Lagrange
    • Polynôme de Taylor - Théorème de Taylor
    • Théorème des extrema locaux - Caractérisation de Monge